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Abstract|This paper summarizes the most recent advances
in wave-based oscillator design, reviewing various manifestations
of the traveling wave oscillator and the standing wave oscillator.
We then review and analyze our latest development of standing
wave oscillator design utilizing wave-adaptive tapered transmis-
sion lines, which is originally reported in [1]. This structure low-
ers phase noise through loss-reducing shaping of the transmission
line, such that it is adapted to the position-dependent standing
wave amplitudes. Demonstrating the bene¯ts of standing-wave-
based operations, this novel design concept boosts the potential
for the emergence of standing wave oscillators as a useful alter-
native to the traditional LC oscillator.

Index Terms| oscillators, traveling wave oscillators, stand-
ing wave oscillators, tapered transmission lines, phase noise, radio-
frequency.

1. INTRODUCTION

While a prevalent class of RF oscillators relies on lumped LC
resonators, an oscillator type that operates instead upon wave
behaviors has recently emerged. Sections 2 and 3 of this paper
review these wave-based oscillators, categorized into traveling
wave oscillators (TWO) [2] - [4] and standing wave oscillators
(SWO) [5] - [7].

Wave-based oscillators strongly ful¯ll certain design criteria,
including high-frequency operation [2] [3] and low-skew low-jitter
clock distribution [6]. But as of yet, the advantages of wave be-
haviors in terms of resonator Q and oscillator phase noise have
not been readily apparent. The authors have recently demon-
strated in [1] that standing wave oscillators (SWO) are indeed
well-suited to a valuable exploitation of wave properties that en-
hances resonator Q and lowers phase noise. Standing waves are
unique in that the current and voltage amplitudes vary with po-
sition. The transmission line loss characteristics can be adapted
to these amplitude variations through tapering to reduce loss and
improve phase noise signi¯cantly. This work is originally treated
in [1] with a complete design procedure and experimental results.
In Sec. 4 we review this design concept and present a theoret-
ical quantitative analysis of the tapered structure, which o®ers
encouraging prospects for SWOs.

2. TRAVELING WAVE OSCILLATORS

A basic form of the traveling wave oscillator (TWO) depicted in
Fig. 1(a) consists of a distributed ampli¯er with positive feed-
back [2] [3]. The TWO directly inherits the major advantage of
distributed ampli¯cation, the facilitation of oscillation frequen-
cies toward the process-dependent fT . However, the TWO of Fig.
1(a) su®ers from certain disadvantages due to its termination re-
sistors. The forward wave in the gate line and the reverse wave
in the drain line are unnecessarily wasted in the termination re-
sistors. Additionally, the termination resistors are constant noise
sources which degrade overall phase noise of the oscillator [8].

The rotary traveling wave oscillator (RTWO) of Fig. 1(b)
[4] remedies these problems by eliminating the termination re-
sistors and cross-coupling the output and input lines. It also
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Figure 1: (a) TWO [2] [3]. (b) RTWO [4].
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Figure 2: MOSFET-based cross-coupled inverters.

replaces the one-directional ampli¯ers of the TWO of Fig. 1(a)
with cross-coupled inverters, whose symmetry allows use of a sin-
gle di®erential transmission line. The resultant di®erential line
takes the form of a MÄobius strip where both forward and reverse
waves are recycled. The cross-coupled inverters may be realized
using cross-coupled NMOS- or CMOS-FETs as shown in Fig. 2.

Standing wave oscillators (SWO) discussed in the next sec-
tion provide an alternative solution to the shortcomings of the
TWO of Fig. 1(a).

3. STANDING WAVE OSCILLATORS

3.1. ¸=4 and ¸=2 SWOs

A ¸=4 SWO depicted in Fig. 3(a) is the most compact SWO
con¯guration [1]. In this SWO a di®erential transmission line is
connected to a pair of cross-coupled inverters at one end and is
shorted at the other end. Energy injected as forward waves by the
cross-coupled inverters is re°ected into reverse waves at the short.
In steady state, the forward and reverse waves superpose to form
standing waves. While boundary conditions allow standing wave
modes at l = ¸=4£ n (n = 1; 3; 5; :::), the higher odd modes are
insigni¯cant relative to the fundamental mode (l = ¸=4) due to
substantial high-frequency loss.

In the fundamental mode the voltage and current amplitudes



short

z

V z( )

I z( )

0

Voltage( )V

l

(a)

z

Current ( )I

l

z0 l

Ldz/2

Cdz

Rdz/2

Gdz

s

w

Ldz/2 Rdz/2

Ldz/2

Cdz

Rdz/2

Gdz

Ldz/2 Rdz/2
(b)

+

-

0

differential
t-line

Figure 3: (a) ¸=4 SWO [1] and standing waveforms (fundamental
mode). (b) LRCG model for di®erential transmission lines.
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Figure 4: (a) ¸=2 SWO (b) ¸=2 SWO with distributed gain-cells [6]

of the standing wave assume monotonic variations with z as il-
lustrated in Fig. 3(a). At the short end (z = l), there is a
voltage minimum (zero) and a current maximum. At the other
end (z = 0) where the cross-coupled inverters are placed, there is
a voltage maximum and a current minimum.1 As will be seen in
Sec. 4, this amplitude variation in standing waves makes possi-
ble the transmission line tapering technique to lower SWO phase
noise.

A variety of other SWOs can be constructed similarly. For
instance, Fig. 4(a) shows a ¸=2 SWO, a natural extension of the
¸=4 SWO. The ¸=2 SWO in Fig. 4(a) can be modi¯ed as shown
in Fig. 4(b), where the line loss is compensated by distributed
gain cells [6].

3.2. Circular SWO

All the SWOs presented above rely upon re°ective boundaries,
but re°ection is not a necessary element for standing wave for-
mation [7]. If energy is injected on a ring (close-loop) transmis-
sion line as shown in Fig. 5(a), the energy will be split equally
and will travel symmetrically along the ring in clockwise and
counter-clockwise directions. Thus without any re°ection, the

1The amplitude of this current minimum at z = 0 is slightly larger
than zero because transistor loading alters the boundary condition such
that l is slightly smaller than ¸=4.
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Figure 5: (a) Ring transmission line (b) l = ¸ voltage standing wave
(c) l = 2¸ voltage standing wave (d) Circular standing wave oscillator
(CSWO) with even-mode suppression connection (broken lines) [7]

two oppositely traveling waves superpose to form standing waves.
The basic selection mechanism determining the various standing
wave modes is the periodic boundary condition that requires the
voltage, V (Á), at any angle on the ring, to be equal to V(Á+2¼).
As a result, the standing wave modes must correspond to l = n¸
where l is the circumference of the ring, and n = 1; 2; 3; :::. Fig-
ures 5(b) and (c) depict voltage waveforms of the fundamental
(n = 1) and the second (n = 2) modes, respectively, each with
loud and quiet ports.

The circular standing wave oscillator (CSWO) [7] is con-
structed by placing cross-coupled inverters at two opposite ports
of the ring, T1-T2 and B1-B2, as shown in Fig. 5(d), to compen-
sate loss in the ring. While the CSWO supports all the standing
wave modes (practically the ¯rst and second modes due to high
frequency loss), one may suppress the even-modes vibrations by
connecting T1 to B2 and T2 to B1 as shown with broken lines in
Fig. 5(d). The connections ensure port T1-T2 and port B1-B2
remain always in opposite phase, which is possible only for odd
modes [7]. The major rationale for the even mode suppression
is to concentrate more energy in the odd modes (practically, the
fundamental mode) for sinusoid generation applications.

3.3. Frequency tuning

The SWO can be made frequency-tunable [9]. Placing a lumped

varactor on the transmission line and varying the degree of load-
ing allows one to in°uence the boundary condition, resulting in
the frequency tuning. Alternatively, uniform distribution of var-
actors along the transmission line can be used to modify the
phase velocity, leading to frequency tuning.

4. STANDING-WAVE ADAPTIVE TAPERING

The previous two sections reviewed various forms of wave-based
oscillators and their operations. In this section we review our
latest development of standing wave oscillator (SWO) design, the
standing-wave adaptive transmission line tapering for lowering
SWO phase noise. The original work is reported in [1] and this
section is a brief review but with a new theoretical quantitative
analysis. The ¸=4 SWO of Fig. 3(a) will be used in this section
as a demonstrational vehicle.
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Figure 6: (a) Simulation-based impedance contour in w-s space and
R and G variations. (b) ¸=4 SWO using a tapered CPS. [1]

4.1. Basic Concept

For silicon integration, the di®erential transmission line of Fig.
3(a) can be implemented as an on-chip coplanar stripline (CPS),
composed of two metals running in parallel. Figure 3(b) shows
the familiar di®erential LRCG model for the on-chip CPS where
L, C, R, and G are inductance, capacitance, series resistance,
and shunt conductance per unit length, respectively. Loss within
metals due to skin and proximity e®ects are responsible for the
series loss R while interactions with the lossy media outside the
metals (underlying substrate and metals) produce the shunt loss
G. R couples to current waves as G couples to voltage waves
to introduce respective series and shunt losses, directly a®ecting
CPS quality factor, Q, and oscillator phase noise. Low values of
R and G are favorable.

Varying metal width, w, and separation, s, of the CPS (w
and s are with reference to Fig. 3(a)) is a means of modifying
R and G. However, simultaneous minimization of R and G is
often impossible; increasing w and s decreases R by mitigating
the skin and proximity e®ects, but increases G by allowing more
interaction with the lossy substrate and underlying metals. This
trade-o® between R and G imposes a major constraint in overall
loss minimization when the CPS carries a traveling wave.

When the CPS hosts a standing wave, the R-G tradeo® can
be overcome to minimize loss, thanks to the position-dependent
standing wave amplitudes. As shown in Fig. 3(a), the ¸=4 SWO
has a voltage maximum and current minimum near z = 0 and
vice versa near z = l, so power loss is dominated by shunt con-
ductance G toward z = 0 and by series resistance R toward
z = l. To exploit this property, one should minimize R toward
z = l while the unavoidable increase in G is inconsequential due
to the negligible voltage amplitude in this vicinity. Likewise to-
ward z = 0, one should minimize G while the inevitable increase
in R is innocuous due to the locally negligible current amplitude.
This position-dependent variation of the loss parameters adapted
to the standing wave amplitudes yields a CPS structure that is
tapered to reduce loss.

In order to prevent local re°ections, the transmission line
tapering should be performed while keeping the characteristic
impedance, Z0, constant throughout the line. This task is facili-
tated by comprehensive EM simulation data for the CPS, which
reveal the dependence of R, G, and Z0 on a wide range of w and s
values [1]. For instance, Fig. 6 shows a simulation-based contour
of constant characteristic impedance in w-s space for the CPS
in a standard CMOS technology. As one simultaneously moves
apart and widens the CPS following this contour, Z0 remains
constant while R decreases and G increases. This R-G tradeo®

was already mentioned. The CPS of our design example, a ¸=4
SWO, can be tapered along this contour as shown in Figs. 6(a)
and (b). The voltage maximum and current minimum at z = 0 is
best suited by a con¯guration with low G despite high R (point
A in 6(a)). At z = l where the current maximum and voltage
minimum occurs, a con¯guration with low R despite high G is
employed (point C). Beyond the range from A to C, loss charac-
teristics do not favor tapering. The detailed design procedure is
found in [1]. The following subsection quantitatively predicts loss
reduction and phase noise improvement due to this line tapering.

4.2. Quantitative Treatment

In this subsection, we will ¯nd the tapered transmission line with
a constant characteristic impedance, Z0, that has minimum loss
when hosting a standing wave mode. We will also calculate the
uniform transmission line with the same characteristic impedance
that has minimum loss when hosting the same standing wave
mode. Comparison of the two cases will quantify the loss re-
duction and Q improvement (and hence phase noise reduction)
owing to the tapering.

The total time-averaged loss, Pdiss, of a single standing wave
mode in a general position-dependent transmission line whose
horizontal span is l is given by

Pdiss =

Z l

0

h
1

2
R(z)I2(z) +

1

2
G(z)V 2(z)

i
dz (1)

where I(z) and V (z) are current and voltage amplitudes of the
standing wave mode at z while R(z) and G(z) are the series and
shunt resistances per unit length at z. In the position-dependent
transmission line, inductance and capacitance per unit length
are not constant so V (z) and I(z) are generally non-sinusoidal
and depend on the line structure. Thus (1) is di±cult to evalu-
ate in the given form. However, parametrization to the wave's
phase, µ(z), from the physical dimension, z, will greatly simplify
the problem. This mapping from z to µ(z) is useful because
in any general transmission line with a constant characteristic
impedance, Z0, the voltage and current amplitudes for a stand-
ing wave mode are always2 sinusoids of the phase, µ(z):

V (z) = V0 cos µ(z), I(z) = I0 sin µ(z) (2)

This is a direct result obtained from the wave equation for the
general transmission line [9] where Z0 = V0=I0 and µ(z) is related
to z by3

µ(z) = !

Z z

0

p
L(z)C(z)dz (3)

Here, ! is the modal frequency, and L(z) and C(z) are inductance
and capacitance per unit length at z. With the parametrization
to µ, we may rewrite (1) as

Pdiss =

Z ¼

2

0

h
1

2
(I0 sin µ)

2Rµ(µ) +
1

2
(V0 cos µ)

2Gµ(µ)
i
dµ (4)

where we have chosen l = ¸=4 and the fundamental ¸=4 mode.
Here Rµ(µ) ´ R(z) ¢(dz=dµ) and Gµ(µ) ´ G(z) ¢(dz=dµ) are series
and shunt loss per radian phase shift where dz=dµ is easily ob-
tained from (3). Now one can easily tackle the loss minimization
problem using (4).

The constraint for the minimization of Pdiss is the previously
mentioned R-G tradeo®. While the detailed behavior of the R-G
tradeo® is technology dependent, here we require constant prod-
uct RµGµ as an example constraint. The EM simulation used to

2assuming weak loss.
3Note that µ(z) reduces to the familiar !

p
LCz = ¯z in the uniform

line case where ¯ is the phase constant, 2¼=¸.



produce Fig. 6 reveals that in the technology used for the simu-
lation, the R-G tradeo® along the contour may be approximately
described by this constant RµGµ. Assuming this constraint, we
may introduce a constant, K2 ´ RµGµ.

For a uniform line, Rµ(µ) = Rµ;0 (const.) and Gµ(µ) = Gµ;0

(const.), and therefore (4) reduces to

Pdiss =
¼

8
I20

£
Rµ;0 + Z2

0Gµ;0

¤
¸

I20¼(KZ0)

4
´ Pdiss;min (5)

where Pdiss is minimized with respect to Rµ;0 (after substituting
Gµ;0 = K2=Rµ;0) to get Pdiss;min. The minimum occurs when
Rµ;0 = KZ0 and Gµ;0 = K=Z0 (optimum uniform line).

For a tapered (position-dependent) line, the integrand of (4)
for a ¯xed µ is minimized to (1=2)I20KZ0 sin 2µ, which occurs
when Rµ(µ) = KZ0 cot µ and Gµ(µ) = (K=Z0) tan µ (optimum
tapered line). The corresponding minimum loss is then

Pdiss;min =
1

2
I20KZ0

Z ¼

2

0

sin 2µdµ =
1

2
I20KZ0 (6)

Comparison of (6) to (5) reveals that under the constraint K2 =
RµGµ the loss in the optimal tapered line is equal to 2=¼ times
that in the optimal uniform line when both carrying the same
standing wave given by (2).

To calculate the corresponding improvement in Q, we need to
consider the energy stored in the transmission lines. The energy
stored in a generally position-dependent ¸=4 line with a constant
characteristic impedance Z0 is given by

Estored =

Z ¼

2

0

h
1

4
(I0 sin µ)

2Lµ(µ) +
1

4
(V0 cos µ)

2Cµ(µ)
i
dµ (7)

when the line hosts the standing wave of (2). Here Lµ(µ) ´ L(z) ¢
(dz=dµ) and Cµ(µ) ´ C(z) ¢ (dz=dµ) are inductance and capaci-

tance per radian phase shift. Using dµ=dz = !
p

L(z)C(z) from

(3) and the uniform Z0 =
p

L(z)=C(z), we ¯nd that Lµ(µ) =
Z0=! and Cµ(µ) = 1=(!Z0), which are independent of µ and
solely determined by the modal frequency and the characteristic
impedance. Since the tapered line and the uniform line obtained
above have the same Z0 and !, they also have the same Lµ and
Cµ. This, in conjunction with (7), means that the tapered and
uniform optimum lines store exactly the same amount of energy.
As a result, the loss reduction by a factor of ¼=2 due to taper-
ing directly translates to a ¼=2 improvement in Q. The familiar
Leeson's formula [10] Lf¢!g = (F=2) ¢ (kT=Ps) ¢ (!=(Q¢!))2 »
1=(PsQ

2) then predicts that phase noise improves by an approx-
imate factor of (¼=2)3 ¼ 5:9dB as the loss reduction enhances
not only Q but also signal power Ps at the oscillator core.

The calculation in this subsection showed a general math-
ematical method to deal with tapered transmission lines and
served to convey a numerical idea on loss reduction, Q enhance-
ment, and phase noise improvement owing to tapering. While
capturing the essential concept, the calculation is based on the
assumption of constant RµGµ which is approximate. The as-
sumption also breaks down eventually as Rµ(µ) = KZ0 cot µ and
Gµ(µ) = (K=Z0) tan µ in the ideal optimum tapered line approach
zero and in¯nity at each end, precluding total optimization in
practice. The following subsection brie°y presents a real-world
design (tapered CPS SWO) example from [1].

4.3. Design Example

Figures 7 shows the die photo for the implemented SWOs with
the optimum uniform (left) and tapered (right) CPS from [1].
They were implemented in a 0.18¹m CMOS technology. The op-
timum uniform CPS SWO was implemented for the comparison
purposes. Calculations using the simulated design parameters

Figure 7: MOS SWO with uniform (left) and tapered (right) CPS.
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Figure 8: Measured phase noise for the tapered- and uniform-CPS
SWOs.

determine that the loss reduction due to tapering is about 1.5,
close to the factor, ¼=2 ¼ 1:57, of the previous subsection. This
loss reduction raises the e®ective CPS Q by 50% to a consider-
able 59, over the simulated uniform-CPS Q of 39. Figure 8 shows
the measured phase noise over 3 decades of o®set frequencies for
both the tapered-CPS and uniform-CPS SWOs (both SWOs os-
cillate around 15 GHz). The phase noise improvement due to
the tapering is at least 5dB between 10kHz and 1MHz while at
greater o®set frequencies, the improvement is 8 to 10dB.
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