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RESISTIVE MEMORY

Efficient AI with MRAM
In-memory computing chips based on magnetoresistive random-access memory devices can provide 
energy-efficient hardware for machine learning tasks.

Qiming Shao, Zhongrui Wang and J. Joshua Yang

In the past decade, artificial intelligence 
(AI) has undergone unprecedented 
development, introducing 

ground-breaking applications such as 
face recognition, language translation and 
industrial automation. But the continued 
advance of AI creates critical challenges in 
traditional digital hardware. Computers 
currently have to shuttle massive amounts 
of data between off-chip memory and 
processing units, a limitation known as 
the von Neumann bottleneck. At the same 
time, Moore’s law, which has fuelled the 
development of digital electronics for 
decades, is running out of gas. Fundamental 
changes to computing hardware are needed. 
One potential solution is resistive memories 
(or memristors). When non-volatile 
resistive memory cells are grouped 
into a crossbar array, they can perform 
multiply–accumulate operations — the 
most expensive and frequent operations 
in AI — by directly using Ohm’s law for 
multiplication and Kirchhoff ’s current law 
for summation. As a result, data are both 
stored and processed in the same location, 
which essentially removes the energy and 
time overheads incurred by expensive 
off-chip memory access for data fetching 
in digital hardware. Resistive memory cells 
are also simple capacitor-like structures, 
providing excellent manufacturability, 
stackability and scalability.

Different non-volatile resistive memories 
leverage different physical mechanisms 
for resistance modulation, and thus offer 
unique strengths and weaknesses when used 
for in-memory computing1. Traditional 
floating gate transistors are three-terminal 
resistive memories2; their charge injection 
programming requires large voltages and 
leads to slow write speeds and limited 
endurance. Emerging two-terminal 
and three-terminal resistive memories 
exploit redox reactions, phase transitions, 
ferroelectricity or magnetoresistance  
(Fig. 1a)1. Redox reactions and phase 
transitions often rely on the formation and 
rupture of conducting channels — providing 
excellent analogue conductance — and have 
recently been integrated into large-scale 

computing-in-memory systems to accelerate 
different machine learning tasks3,4. But 
many of them suffer from relatively large 
programming energy and variability. 
Ferroelectric resistive memory stores 
bits with the polarization of ferroelectric 
domains, the scalability of which may be 
limited by domain size1,5.

Magnetoresistive random-access 
memory (MRAM) is based on magnetic 
domain flipping. This means minimal 
atom displacement in the switching 
process, which should in turn provide good 
endurance and repeatability1,6,7. Recently, 
an MRAM-based in-memory chip with 
an energy efficiency of 5.1 tera operations 

per second (TOPS) per watt, which is 
notably better than state-of-the-art digital 
alternatives, was reported8. However, this 
approach, like other MRAM systems, suffers 
from low resistance and small dynamic 
range. Writing in Nature, Donhee Ham, 
Sang Joon Kim and colleagues now report 
an MRAM-based in-memory computing 
chip that overcomes the low-resistance 
challenge by replacing current summation 
with resistance summation9. The approach 
essentially uses potential (voltage) signals 
instead of the commonly used current 
signals and thus greatly reduces the 
energy consumption, especially in arrays 
with low-resistance cells. It also has a 
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Fig. 1 | In-memory computing based on resistive memories. a, Selected properties of four types of 
emerging random-access memory for applications in multiply–accumulate operations in artificial neural 
networks. RT, room temperature. b, Micrograph and layout of the 64 × 64 MRAM crossbar array with 
peripheral circuits. W/R, write/read; TDC, time-to-digital converter. c, Photograph of an unpackaged 
MRAM chip. Panels adapted with permission from: a, ref. 1, Springer Nature Ltd; b,c, ref. 9, Springer 
Nature Ltd.
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smaller footprint than a purely digital 
implementation based on XNOR logical 
gates, and offers non-volatility, which is 
important for low-energy edge applications.

The researchers — who are based 
at Samsung Electronics and Harvard 
University — use a time-to-digital converter 
to read out the weighted resistance of an 
entire column of the chip (Fig. 1b). Different 
column resistances will yield different 
delays in reaching the stable voltage, and 
they obtain the resistance information by 
sampling the time when the voltage reaches 
the reference voltage. As a result, their 
chip (Fig. 1c), which is based on MRAM 
cells developed for storage-class memories, 
exhibits an excellent energy efficiency of 
262 TOPS per watt in performing vector–
matrix multiplications. They use their chip 
to experimentally classify Modified National 
Institute of Standards and Technology 
(MNIST) handwritten digits, accelerating 
both a binarized multilayer perceptron and 
a classical VGG-8 neural network model; 
the classification performance of this 
analogue in-memory computing approach 
is on par with that of the software baseline. 

Four MRAM chips are also successfully 
employed in the VGG-10 feature extractor 
of a SqueezeDet neural network for 
end-to-end human face detection in real 
time, highlighting the potential of the 
approach for low-power face authentication 
at the edge.

As the technology evolves, a cross-layer 
design that seamlessly optimizes devices, 
circuits, systems and algorithms is critical 
for the development of brain-like AI 
hardware6,7. The work of Ham, Kim 
and colleagues is an illustration of the 
potential of such an approach. To push the 
technology further, other emerging MRAM 
devices, such as spin–orbit torque MRAM 
and magnetoelectric MRAM, could be 
used to reduce currents because of their 
large-resistance cells. At the same time, and 
at the algorithm level, tailoring machine 
learning methods according to the underlying 
hardware could be used to maximize both 
system performance and efficiency. ❐
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