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Abstract|This paper reviews two technologies that gov-
ern the character of electromagnetic waves, or wave-control
technologies, that we recently developed [1,2] in the context
of wave-based oscillators. In [1], the component ¯elds of a
standing wave hosted by a transmission line are sculpted to
better suit the unique standing wave properties; this passive
wave control is achieved by tapering the transmission line
along its length and serves to reduce the oscillator phase
noise. In [2] we constructed an oscillator that self-generates
a stable, periodic train of electrical solitons. In this work,
an active ampli¯er controls the \unruly" soliton dynamics to
guarantee oscillation stability.

Keywords| standing waves, solitons, oscillators, (nonlin-
ear) transmission lines, modelocking, pulse generation.

I. Introduction

WHILE a prevalent class of modern RF & microwave
oscillators relies on lumped LC tanks, oscillators

that operate instead upon wave behaviors are not un-
common. In the pre-transistor era, GHz signal genera-
tion was done predominantly by oscillators consisting of
electron beams coupled with waveguides or cavities [3].
These electron-beam oscillators were indeed wave-based:
the backward-wave and klystron oscillators, two prime ex-
amples of the oscillator type, operate using travelling and
standing waves, respectively.
The advent of the transistor and microfabrication tech-

nology in later years gradually ushered in the time for solid-
state wave-based oscillators, often in an integrated form.
Transistors combined with a planar waveguide (transmis-
sion line) yield travelling wave oscillators (recent examples:
[4] - [7]) while transistors coupled with a planar cavity
(transmission line with re°ective or periodic boundaries)
lead to standing wave oscillators (recent works: [8, 9]).1

The wave-based oscillators strongly ful¯ll certain design
criteria. For example, the wave on the transmission line
readily lends itself to distributed ampli¯cation by transis-
tors spread along the line, facilitating high-frequency oscil-
lations [4] - [6]. In another example, wave-based oscillators
were ingeniously used for low-skew/jitter clock distribution
[7, 8]. In suitable applications, therefore, wave-based oscil-
lators could one day become an indispensable feature.
Working in this area of wave-based oscillators, the au-

thors recently advanced two new technologies, Standing-
wave adaptive line tapering and the electrical soliton oscil-
lator, whose review is the purpose of this article.
Standing-wave adaptive line tapering: Previously

the advantages of wave behaviors in terms of resonator Q
and oscillator phase noise were not readily apparent. In
[1], we addressed this issue, presenting a case where ex-

1Dielectric oscillators are another solid-state example.

ploitation of wave behaviors proves bene¯cial in enhanc-
ing Q and lowering phase noise. Standing waves have the
unique property of position-dependent voltage-current am-
plitudes. We demonstrated that the loss characteristics of
a transmission line hosting standing waves can be adapted
to these amplitude variations through a position-dependent
structuring (tapering) of the line to reduce loss, leading to
Q improvement and phase noise reduction (up to 10 dB).

Electrical soliton oscillator: This work marks a dis-
tinctive departure from the conventional sinusoidal wave-
based oscillators: reporting in [2], we introduced the elec-
trical circuit that self-generates a periodic, stable train of
unique nonlinear pulses known as electrical solitons. Soli-
tons are unique pulse-shape waves that exhibit singular
nonlinear behaviors as they propagate in nonlinear media.
Solitons per se are well known phenomena that have cap-
tivated scientists over a century. In the electrical domain,
the nonlinear transmission line (NLTL) [1D lattice of in-
ductors and varactors: Fig. 1(a)] has been extensively used
to create electrical solitons over the past 40 years for sharp
pulse generation [10]. In these developments, however, the
NLTL has been almost exclusively used as a \2-port (input
+ output)" system that requires an external high-frequency
input to produce the soliton output [Fig. 1(a)]. What dis-
tinguishes our circuit in [2] is that it is an oscillator [\1-port
(output only)" system] that self-generates electrical soli-
tons without requiring an external high-frequency input.
Our soliton oscillator was made possible by connecting the
NLTL around a unique ampli¯er [Fig. 1(b)]. By nature,
electrical solitons are \unruly," which had rendered previ-
ous attempts to build the soliton oscillator unsuccessful,
usually resulting in chaotic oscillations [11]. The key to
our success was ¯nding a way to \tame" the solitons: the
ampli¯er was uniquely engineered to stabilize soliton oscil-
lation, in addition to providing gain. The electrical soliton
oscillator now mirrors the already-mature soliton lasers in
optical modelocking.

\The common thread": Our two technologies above
share in their essence a common feature: wave control. The
tapering of the passive transmission line is to control the
wave's ¯eld distribution on the line: this passive control
exploits the unique standing wave properties for improving
phase noise. In the electrical soliton oscillator, the active
ampli¯er controls the \unruly behaviors" of soliton waves:
this active control suppresses soliton's inherent instability-
prone dynamics to guarantee oscillation stability. This pa-
per is a review of these two technologies: Secs. II and III
review the wave-adaptive line tapering and the electrical
soliton oscillator, respectively. Detailed descriptions can
be found in [1] and [2], and related articles in [12] and [13].
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Fig. 1. (a) 2-port NLTL. (b) 1-port soliton oscillator.

II. Standing-Wave Adaptive Line Tapering

This section reviews our work on standing-wave adap-
tive transmission line tapering for lowering phase noise
of standing wave oscillators [1]. The quarter-wavelength
(¸=4) standing wave oscillator (SWO) of Fig. 2(a) will be
used as a demonstrational vehicle. In this most compact
SWO con¯guration, a di®erential transmission line is con-
nected to a pair of cross-coupled inverters at one end and is
shorted at the other end. The cross-coupled inverters may
be realized using cross-coupled transistors [Fig. 2(b)].

In the SWO of Fig. 2(a), energy injected by the cross-
coupled inverters propagates in forward waves along the
line toward the short, where the energy is re°ected into
reverse waves. In steady state, the forward and reverse
waves superpose to form standing waves. In the fundamen-
tal mode (l = ¸=4), voltage amplitude, V (z), and current
amplitude, I(z), exhibit monotonic variations with z as de-
picted in Fig. 2(a). The voltage minimum (zero) and cur-
rent maximum occur at the short end (z = l) while the volt-
age maximum and current minimum occur at z = 0. Due to
transistor loading, the amplitude of this current minimum
at z = 0 is slightly larger than zero, as l is slightly smaller
than ¸=4. This amplitude variation in standing waves is
the key property that makes possible the transmission line
tapering to lower SWO phase noise, review of which will
be the subject of the following subsections.

A. Wave Adaptive Line Tapering - Concepts

For silicon integration, the di®erential transmission line
of Fig. 2(a) can be implemented as an on-chip coplanar
stripline (CPS) [Fig. 2(c)], composed of two metals run-
ning in parallel. Figure 2(c) also shows the familiar di®er-
ential LRCG model for the on-chip CPS where L, C, R,
and G are inductance, capacitance, series resistance, and
shunt conductance per unit length, respectively. R mainly
accounts for loss within metals due to skin and proximity
e®ects while G re°ects loss outside metals (e.g., substrate
loss). R couples to current waves as G couples to voltage
waves to introduce respective series and shunt losses, di-
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Fig. 2. (a) ¸=4 SWO and standing waveforms at the fundamen-
tal mode. (b) MOSFET implementations of the cross-coupled
inverters. (c) Coplanar stripline and di®erential LRCG model.

rectly a®ecting CPS quality factor, Q, and oscillator phase
noise. Low values of R and G correspond to high Q.

Varying metal width, w, and separation, s, of the CPS
[w and s are with reference to Fig. 2(c)] is a means of
modifying R and G. However, desired simultaneous mini-
mization of R and G is often impossible: increasing w and
s decreases R by mitigating the skin and proximity e®ects,
respectively, but increases G by allowing more interaction
with the lossy substrate and underlying metals. This trade-
o® between R and G imposes a major constraint in overall
loss minimization when the CPS carries a traveling wave.

Our key idea in [1] is that when the CPS hosts a standing
wave, the R-G tradeo® can be elegantly circumvented to
minimize loss, thanks to the position-dependent standing
wave amplitudes. As shown in Fig. 2(a), the ¸=4 SWO
has a voltage maximum and current minimum near z = 0
and vice versa near z = l, so power loss is dominated by
shunt conductance G toward z = 0 and by series resistance
R toward z = l. Therefore, G may be minimized to re-
duce loss near z = 0 while the unavoidable increase in R
(due to the R-G tradeo®) is not detrimental because of
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Fig. 3. (a) Simulation-based characteristic impedance contour and
R-G variations in w-s space. (b) ¸=4 SWO using a tapered CPS.

the negligible current amplitude in this vicinity. Similarly
toward z = l, R may be minimized to reduce loss while
the inevitable increase in G is innocuous due to the locally
negligible voltage amplitude. This continuous variation of
R and G along z adapted to the standing wave amplitudes
to minimize loss yields a tapered CPS structure. Note that
the position dependence of the standing wave amplitudes
is what makes possible this tapering technique.

In order to prevent local re°ections, the transmission line
tapering should be performed with attention to holding
the characteristic impedance, Z0, constant throughout the
line. This task is facilitated by comprehensive EM sim-
ulation data for various uniform CPSs, which reveal the
dependence of R, G, and Z0 on a wide range of w and
s values [1]. Figure 3 shows an example simulation-based
contour of constant characteristic impedance in w-s space
in a standard CMOS technology. As one simultaneously
moves apart (increasing s) and widens (increasing w) the
CPS following this contour, Z0 remains constant while R
decreases and G increases. This R-G dependence on w and
s is the previously discussed R-G tradeo®. The CPS of the
¸=4 SWO can be tapered along this contour as shown in
Fig. 3. The voltage maximum and current minimum at
z = 0 yields minimum local loss with low G despite high R
[point A in Fig. 3(a)]. The current maximum and voltage
minimum at z = l yields minimum local loss with low R
despite high G (point C). Outside the range from A to C,
the R-G tradeo® deteriorates and it becomes di±cult to
improve either loss. Therefore, no point outside the range
is optimal for any position along the standing wave.

Note that while line tapering has been used in the past,
traditional line tapering has been solely focused on varia-
tion of characteristic impedance with position [1] for ap-
plications such as impedance transformation. The novelty
of our line tapering lies in producing variations of the loss
parameters with position to reduce line loss while keeping

characteristic impedance uniform throughout the line.

B. Wave Adaptive Line Tapering - Theory

This subsection presents an analysis that quanti¯es the
loss reduction and Q improvement owing to the tapering.
This analysis was originally conducted in [1].
The total time-averaged loss, Pdiss, in a general tapered

(position-dependent) transmission line with constant char-
acteristic impedance Z0, when hosting a single standing
wave mode, is given by

Pdiss =

Z l

0

·
1

2
R(z)I2(z) +

1

2
G(z)V 2(z)

¸
dz (1)

where l is horizontal span of the line, I(z) and V (z) are
position-dependent current and voltage amplitudes of the
standing wave mode, and R(z) and G(z) are the series re-
sistance and shunt conductance per unit length at z. In
order to obtain the minimum-loss tapered line, we should
¯nd R(z) and G(z) that minimize Pdiss above under the
constraint of the R-G tradeo®. However, it is very di±cult
to evaluate the integration above since I(z) and V (z) are
not known a priori, as they depend on the line structure,
which has yet to be determined.
To appreciate the di±culty in evaluating (1), imagine the

following scenario. We start with a uniform line, in which
I(z) and V (z) are sinusoids. We then ¯nd R(z) and G(z)
that minimize (1) for these sinusoidal amplitude variations.
These R(z) and G(z) are z-dependent, thus correspond-
ing to a tapered line structure, upon which I(z) and V (z)
are no longer sinusoids. However, the R(z) and G(z) were
based on the sinusoidal amplitude variations, and hence,
this tapered line is not optimized for the new non-sinusoidal
amplitude pro¯les. Thus an iteration process is required,
making the optimization procedure involved.
Fortunately, evaluation of (1) is substantially simpli¯ed

by our novel transformation [1] in which the integration
variable, z, of (1) is mapped to µ, the wave's phase. When
a wave travels down on a general tapered line, its in¯nites-
imal phase change is given by dµ = [!=v(z)] ¢dz at position
z assuming a weak loss, where ! is the modal frequency
and v(z) is the wave velocity. Since by design the charac-
teristic impedance is held at a constant value Z0, there is
no local re°ection and the wave's phase at z is the simple
accumulation of the in¯nitesimal phase change:

µ(z) = !

Z z

0

p
L(z0)C(z0)dz0 (2)

where we have used v(z) = 1=
p
L(z)C(z) [L(z) and C(z)

are inductance and capacitance per unit length at z].
This transformation from z to µ(z) is powerful because

the voltage and current amplitudes for a standing wave
mode are always sinusoids of the phase, µ(z), regardless
of the speci¯c shape of the tapered line of the constant
characteristic impedance:

V (z) = V0 cos µ(z), I(z) = I0 sin µ(z) (3)
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where V0 is the voltage maximum, I0 is the current max-
imum, and Z0 = V0=I0. Note from (2) and (3) that the
voltage and current amplitudes are very complicated func-
tions of z, re°ecting the di±culty of the integration in the
z domain. Now with the transformation of the integration
variable from z to µ using (2), (1) is greatly simpli¯ed to:

Pdiss =

Z ¼
2

0

·
1

2
(I0 sin µ)

2Rµ(µ) +
1

2
(V0 cos µ)

2Gµ(µ)

¸
dµ

(4)
where we have assumed that the line length is chosen as to
produce ¼=2 total phase shift (¸=4 SWO). Here Rµ(µ) ´
R(z) ¢ (dz=dµ) and Gµ(µ) ´ G(z) ¢ (dz=dµ) are series and
shunt loss per radian phase shift where dz=dµ is obtained
from (2). Now one can easily obtain the minimum-loss
tapered line in the µ-domain, by ¯nding Rµ(µ) and Gµ(µ)
that minimize Pdiss in (4). Evaluating (4) is easy since the
current and voltage standing waveforms are always known
sinusoids in the µ-domain regardless of the line shape.
The constraint for the minimization of Pdiss is the pre-

viously mentioned R-G tradeo®. Using RµGµ = const. as a
hypothetical constraint,2 minimization of (4) becomes an
elementary mathematical exercise [1]: one can easily ob-
tain both the minimum-loss tapered line and the minimum-
loss uniform line with their corresponding power dissipa-
tions, comparison between which reveals that the loss in
the minimum-loss tapered line is smaller by a factor of 2=¼
than that in the minimum-loss uniform line [1]. This loss
comparison assumed that both of the transmission lines
of the same characteristic impedance, Z0, host the same
(in the µ-domain) standing waves (at an identical modal
frequency, !) given by (3), and hence this comparison is
meaningful only when the standing waves store the same
amount of energy in both transmission lines. This is indeed
the case as seen in the following.
When hosting the standing waves given by (3), any gen-

eral ¸=4 tapered transmission line with constant charac-
teristic impedance Z0 stores a total time-averaged energy
given by

Estored =

Z ¼
2

0

·
1

4
(I0 sin µ)

2Lµ(µ) +
1

4
(V0 cos µ)

2Cµ(µ)

¸
dµ

(5)
where Lµ(µ) ´ L(z) ¢ (dz=dµ) and Cµ(µ) ´ C(z) ¢ (dz=dµ)
are inductance and capacitance per radian phase shift. Us-
ing (2) and

p
L(z)=C(z) = Z0, we ¯nd Lµ(µ) = Z0=! and

Cµ(µ) = 1=(!Z0), which are independent of µ but solely de-
termined by ! and Z0. Since the minimum-loss tapered line
and the minimum-loss uniform line above have the same Z0
and !, they also have the same Lµ and Cµ. This, in con-
junction with (5), means that the tapered and uniform opti-
mum lines store exactly the same amount of energy. Hence
the loss reduction calculation above is meaningful since it
was performed when the minimum-loss tapered and uni-
form lines store the same amount of energy. Moreover, the
loss reduction by a factor of ¼=2 due to tapering translates
directly to a ¼=2 improvement in Q. The analysis above

2This re°ects the real-world situation quite well [1].

Fig. 4. MOS SWO with uniform (left) and tapered (right) CPS.

conveys a quantitative idea on Q enhancement owing to
the tapering. The real-world improvement due to tapering
is closed to this theoretical prediction (see below).

C. Wave Adaptive Line Tapering - Design

The ¯ndings from the preceding analysis are crucial in
the practical design of the tapered line. As is the key to the
analysis, evaluation of the power dissipation in a tapered
line is much easier in the µ-domain than in the z-domain.
Therefore the minimum-loss tapered line is ¯rst designed
in the µ-domain. To this end, a comprehensive set of EM-
simulated data that are Rµ, Gµ, Cµ, and Lµ values for a
wide range of w and s values (various uniform lines) are
to be ¯rst prepared. Using the data, one can perform a
piecewise construction of the minimum-loss tapered line by
putting segments of the various uniform lines of the same
characteristic impedance together in such a way that local
loss in every µ-position is minimized.3 Equation (4) is use-
ful in evaluating the loss to determine the optimal appor-
tionment of the various uniform line con¯gurations. After
this µ-domain construction, one can translate the design
into the z-domain using (2) to create the physical layout.
Detailed design procedure can be found in [1].
Figure 4 shows the die photo of the SWOs with the

minimum-loss uniform and tapered CPS from [1], which
were implemented in a 0.18¹m CMOS technology. The
uniform CPS SWO was implemented for the comparison
purposes. The uniform CPS has a simulated Q of 39 at 15
GHz4, and the tapered CPS hosting the standing wave has
a higher e®ective Q of 39£ 1:5 ¼ 59, a considerable num-
ber for an on-chip resonator in silicon. The improvement
factor of 1.5 is close to the previous theoretical prediction
of ¼=2. Figure 5 shows the measured phase noise for both
the tapered-CPS and uniform-CPS SWOs (both SWOs os-
cillated around 15 GHz). The phase noise improvement as
large as 10 dB due to the increased Q from the tapering is
evident, attesting to the validity of the wave-adaptive line
tapering concept.

D. Wave Adaptive Line Tapering
- \Wave Control" Perspective -

During optimization of the tapered line, it is most con-
venient to think of the line primarily in terms of its circuit

3A ¯nite number of uniform lines mimic a continuous tapered line.
4This high Q is due to °oating metals placed under the CPS [1].
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Fig. 5. Measured phase noise for the tapered- & uniform-CPS SWOs.

model and its component values, and to view tapering sim-
ply as a modi¯cation of the circuit as we exclusively did in
the preceding subsections. This perspective, however, can
obscure the view of tapering as a modi¯cation of the ¯eld
distributions which comprise the EM standing wave. By
altering w and s, we are actually controlling the 3D spatial
shapes of the wave's ¯elds. Let us consider a transverse
cross section of the transmission line. The thin and closely
spaced metals at z = 0 in Fig. 3(b) correspond to areally
con¯ned, relatively dense electric and magnetic ¯elds; the
wider, spaced metals at z = l in Fig. 3(b) correspond to
more voluminous, di®use ¯elds. Thus the wave becomes
more dispersed at positions closer to z = l.

This alternate perspective permits a physical under-
standing of why loss mechanisms are reduced after taper-
ing. The electric ¯eld is stronger than the magnetic ¯eld at
z = 0 due to the voltage maximum and current minimum.
Losses associated with the electric ¯eld occur due to the
interactions with the underlying substrate, so one would
expect that by utilizing a tight con¯guration (small w & s),
the electric ¯eld will concentrate close to the metals rather
than permeating the substrate and thus yield minimal loss.
Indeed, this intuition matches our ¯ndings from the circuit
model. Similarly, toward the electrical short there is a mag-
netic ¯eld maximum and electric ¯eld minimum. Moving
the metals apart disperses the magnetic ¯eld, reducing the
electron-bunching force and thus dissipation in the metals.
Thus tapering can be thought of as controlling the wave's
physical shape to avoid lossy interactions.

III. Electrical Soliton Oscillator

Now we turn to the second subject of this paper, a review
of the electrical soliton oscillator that we recently reported
in [2] (See also [12] & [13]). This circuit that self-generates
a periodic train of nonlinear pulse-shape waves known as
electrical solitons is a noticeable departure from the con-
ventional sinusoidal wave-based oscillator type. We shall
¯rst introduce solitons to provide background in the fol-
lowing subsection; the subsequent subsections will review
the main subject, the electrical soliton oscillator.

A. Solitons - Primer

Solitons are a unique class of pulse-shaped waves that
propagate in nonlinear dispersive media. They maintain
spatial con¯nement of energy in a pulse shape in propaga-
tion and exhibit singular nonlinear dynamics. Balance be-
tween nonlinearity and dispersion creates the soliton phe-
nomena. Common in nature, solitons are found in various
nonlinear dispersive media, e.g., water, plasma, solid-state
crystals, and optical ¯bers.
In the electrical domain, the nonlinear transmission line

(NLTL), a 1D ladder network of inductors and varactors
[Fig. 1(a)] or alternatively a linear transmission line pe-
riodically loaded with varactors [Fig. 6(a)], serves as a
nonlinear dispersive wave propagation medium [10]. The
nonlinearity originates from the varactors while the dis-
persion arises from the structural periodicity. For certain
pulse-shaped voltage waves, the nonlinearity balances out
the dispersion, and they propagate on the NLTL maintain-
ing their exact shape (in the absence of loss). These are
electrical solitons. The general soliton propagation solution
on the NLTL is a periodic train of solitons [Fig. 6(b)]. In
the presence of loss, the solitons cannot maintain their ex-
act shape in the course of propagation, but they still main-
tain spatial con¯nement of wave energy in a pulse shape
through a unique damping process [14].
In addition to their ability to maintain spatial con¯ne-

ment of wave energy, the electrical solitons on the NLTL
possess other unique properties. To begin with, a taller
soliton travels faster than a shorter one. Due to this
amplitude-dependent speed, if a taller soliton is placed be-
hind a shorter one as shown in Fig. 6(c) top, the taller
one will catch up with the shorter one and move ahead
of it after a collision [Fig. 6(c)]. When two solitons col-
lide [middle of Fig. 6(c)], they do not linearly superpose
and experience signi¯cant amplitude modulations (nonlin-
ear collision). After the collision [bottom of Fig. 6(c)],
the two solitons have returned to their original shapes, but
have acquired a permanent time (phase) shift, shown by
the di®erence in d1 and d2 in Fig. 6(c). The three soliton
properties above, i.e., 1) amplitude-dependent speed, 2) am-
plitude modulation during the collision, and 3) phase modu-
lation after the collision, unless well-controlled, will become
obstacles in constructing the soliton oscillator, leading to
oscillation instabilities as will be seen in the next section.
Non-soliton waves can also travel on the NLTL, but only

by changing their shape to form into a soliton or solitons. A
non-soliton pulse close to soliton shape will be sharpened
into a soliton [Fig. 6(d), top]. A non-soliton pulse that
is signi¯cantly di®erent from soliton shape will break up
into multiple solitons of di®erent amplitudes [Fig. 6(d),
bottom]. It is these transient soliton-forming processes that
have been widely exploited in the traditional 2-port NLTL
approach [Fig. 1(a)] to generate sharp electrical pulses [10].

B. Electrical Soliton Oscillator - Operating Principles
\Control of the Unruly Soliton Waves"

As pointed out in Sec. I, the essence of our work [2] is
the construction of an oscillator that self-generates a pe-
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Fig. 6. (a) NLTL: a linear transmission line periodically loaded with varactors. (b) A general soliton waveform. (c) Depiction of electrical
solitons' amplitude-dependent speed and nonlinear collision. d1 6= d2. (d) Hypothetical transient, soliton-forming processes on the NLTL.

riodic train of electrical solitons without requiring an ex-
ternal high-frequency input. Almost all the previous elec-
trical soliton work used the NLTL as a 2-port system that
requires an external high-frequency input to generate the
soliton output. The distinction of our approach from the
traditional approach is captured in Fig. 1.

The starting idea to build our soliton oscillator was to
combine a ring NLTL with a non-inverting ampli¯er in-
serted in the ring [Fig. 7(a)]. The ring NLTL supports
certain soliton circulation modes determined by the peri-
odic boundary condition, l = n¤ (n = 1; 2; 3; : : :) (l: ring
circumference, ¤: spacing between two adjacent solitons)
[Fig. 7(b)]. The ampli¯er is intended to provide gain to ini-
tiate a startup and to compensate loss in steady state. The
ultimate goal of this topology is to self-generate and self-
sustain one of the soliton circulation modes of Fig. 7(b).

Fig. 7. (a) Soliton oscillator topology. (b) Ring NLTL and Modes.

The topology does indeed lead to oscillations, self-
starting from noise. However, when standard ampli¯ers
are used in the topology, the oscillations tend to be plagued
with instability problems, exhibiting signi¯cant variations
in pulse amplitude and repetition rate [2], [11] [Fig. 8].
The oscillation instabilities arise because the circular loop
topology of Fig. 7(a) not only generates the desired soli-
ton circulation mode, but can also excite other parasitic
solitons [2]. The desired and parasitic solitons continu-
ally collide while circulating in the loop due to their gen-
erally di®erent amplitudes and resultant speed di®erence
(due to solitons' amplitude-dependent speed, Subsec. III-

Fig. 8. Unstable oscillations that can result from Fig. 7(a).

A). These soliton collision events cause the modulations
in the pulse amplitude and repetition rate (Subsec. III-A),
leading to the oscillation instabilities.

The key to our success in building a stable electrical soli-
ton oscillator in [2] is to develop a special ampli¯er in Fig.
7(a), which not only provides gain but also incorporates
three stability mechanisms to prevent the soliton collision
events in steady state. The stability mechanisms are:

(1) Reduced signal saturation: If the ampli¯er saturates

its output signi¯cantly in Fig. 7(a), the ampli¯er output
will be close to a square pulse. As explained with Fig.
6(d), bottom, this square pulse will break apart into mul-
tiple solitons of di®ering amplitudes propagating down the
NLTL. These multiple solitons will circulate around the
loop at di®erent speeds (due to the amplitude-dependent
speed), and be again distorted by the ampli¯er, creating
even more solitons of di®erent amplitudes and speeds. This
process repeats itself, and the solitons continue to circulate
in the loop at di®erent speeds, continually colliding with
one another, causing oscillation instabilities. It is therefore
necessary to minimize distortion.

(2) Perturbation rejection: In steady-state oscillation the
ampli¯er should attenuate any small ambient perturbation
(e.g., noise) that could otherwise grow into parasitic soli-
tons. Unless this is achieved, the desired soliton circula-
tion mode and parasitic solitons will propagate at di®erent
speeds due to their generally di®erent amplitudes, colliding
and building up oscillation instabilities.

(3) Single mode selection: The ampli¯er should select a
single soliton circulation mode in steady-state oscillation
among the many possible modes [Fig. 7(b)]. If this is not
achieved, various modes with generally di®erent amplitudes
will circulate in the loop at di®erent speeds, leading to



7

soliton collision events and hence unstable oscillations.

Fig. 9. Transfer curve of a saturating ampli¯er. Startup bias A is in
the gain region. As the dc component of the ampli¯er output in-
creases in initial transient, the bias is adaptively lowered (dashed
arrow) towards steady-state bias B.

In [2], we achieved these stability mechanisms in an am-
pli¯er by incorporating an adaptive bias control in a stan-
dard saturating ampli¯er. Figure 9, showing the input-
output transfer curve of the saturating ampli¯er, explains
how this is achieved. The transfer curve is divided into
the attenuation, gain, and saturation regions based on the
curve's tangential slopes. At startup the ampli¯er is biased
at point A in the gain region so that ambient noise can be
ampli¯ed to initiate the oscillation startup. As the oscilla-
tion grows and forms into a pulse train, the dc component
of the ampli¯er output increases. This increase in the dc
component is used to adaptively lower the ampli¯er bias
(dashed arrow in Fig. 9). The reduced bias corresponds to
an overall gain reduction, since a portion of the pulse enters
the attenuation region. The bias point continues to move
down on the curve until the overall gain becomes equal to
the system loss, settling at the steady-state bias B.
In steady state with the bias at B, the three stability

mechanisms are simultaneously satis¯ed. First, the re-
duced bias ensures that the peak portions of the input
pulses do not enter the saturation region, reducing distor-
tion (reduced signal saturation). Second, with the reduced
bias, the steady-state input soliton train is placed across
the attenuation and gain regions, causing small perturba-
tions around the bias to be attenuated (perturbation re-
jection). Note that perturbation rejection is accomplished
while maintaining gain for the main portions of the input
soliton train to compensate loss. This threshold-dependent
gain-attenuation mechanism is a technique widely em-
ployed in modelocked lasers in optics, where it is known as
saturable absorption. Third, the dependence of the steady-
state bias on the dc component of the output leads to a
mode-dependant gain since each mode has a di®erent dc
component. This naturally allows for the selection of one
particular mode (single mode selection).
The ampli¯er with the adaptive bias scheme could be im-

plemented in various ways: an example is in Fig. 10. The
ampli¯er consists of two inverting stages: one built around
an nMOS transistor, M1, and the other built around a

Fig. 10. Example stabilizing ampli¯er schematic.

pMOS transistor, M2. The adaptive bias scheme is imple-
mented for both stages. It works as follows for the pMOS
stage. The output waveform, VY , is sensed by the voltage
divider consisting of Ra and Rb, and then is integrated by
the R2-C2 network. The integrated voltage V2 represents a
scaled dc component of VY . This dc component is fed back
to the gate of M2 to set its bias. As the dc level of VY in-
creases, V2 will increase, reducing the gate-source voltage
of M2, e®ectively lowering its bias. A similar argument
goes for the nMOS stage. Combining, the input bias of the
ampli¯er decreases as the dc component of VY increases,
performing the adaptive bias control.

C. Electrical Soliton Oscillator - Experiments

We have developed three soliton oscillator prototypes
that have con¯rmed the circuit concepts. The ¯rst two
prototypes [2] were built using discrete components (mea-
sured pulse widths: 43 ns and 827 ps) to explicitly examine
the detailed dynamics of the oscillator. The third proto-
type [12] was implemented on a CMOS integrated circuit
(measured pulse width: 293 ps). Figure 11 shows the mea-
sured steady-state soliton oscillations from each prototype.
The most fascinating dynamics of the soliton oscillator

can be observed by following the pulse around the oscil-
lator loop in steady state. Figure 12 shows such spatial
dynamics measured from our ¯rst prototype [2]. At the
output of the ampli¯er the pulse (width: 100 ns) is not
exactly a soliton and, hence, sharpens into a soliton while
propagating down the NLTL. Once the soliton is formed
at the eighth section (width: 43 ns), it does not further
sharpen since it is now a soliton. Instead, the loss on the
NLTL becomes the dominant process, and the soliton ex-
hibits soliton damping [14] as it further travels down the
NLTL, reducing its amplitude and velocity while increas-
ing its width. At the end of the NLTL, the pulse width has
increased to 110 ns. It is this clear existence of the transi-
tion point between the two distinctive processes, the pulse
sharpening and widening, that unequivocally con¯rms the
formation of the soliton at that transition point.

D. Future Extensions and Applications

The minimum pulse width of 293 ps achieved in our latest
prototype [12] is not a record number as compared to the



8

Fig. 11. (Left) First soliton oscillator (pulse width: 43 ns, pulse repetition rate: 1.4 MHz). (Center) Second soliton oscillator (width: 827
ps, repetition: 130 MHz). (Right) Third, chip-scale soliton oscillator (width: 293 ps, repetition: 1.14 GHz)

Fig. 12. Measured spatial dynamics of the ¯rst soliton oscillator [2].

state-of-the-art 2-port NLTL (480 fs rise time) [15]. The
value of our work so far, rather, lies in the demonstration
of the soliton oscillator concept: the ability to self-generate
stable solitons. Now with the concept ¯rmly demonstrated,
it can be quickly scaled to a much higher speed. For exam-
ple, the ultrafast NLTL in [15] can be incorporated in our
soliton oscillator to substantially reduce the soliton width.
Placing such an ultrafast NLTL in the soliton oscilla-

tor raises an important question on the impact of the am-
pli¯er bandwidth on the minimum soliton width. While
the propagation of a 1-ps wide pulse on the stand-alone
NLTL is feasible [15], ampli¯ers, even in the state-of-the-
art solid-state technologies, cannot provide bandwidth for
such a sharp pulse. The experimental results in Fig. 12
clearly suggest, however, that the soliton compression on
the NLTL may be able to overcome the bandwidth limi-
tation of the ampli¯er, and hence, it may be feasible to
achieve a 1-ps pulse width using the NLTL of [15] despite
the relatively slower ampli¯er. The explicit demonstration
of this interesting possibility remains an open question, and
would be a natural future extension of this work.
Such picosecond electrical soliton oscillators will o®er

a new platform for all-electrical ultrafast time-domain
metrology. This is because the short pulse duration directly
translates to high temporal resolution in time-domain mea-

surements. The narrow electrical pulses can be used to
sample, or take \snapshots" of, rapidly varying electrical
signals with picosecond temporal resolution [10], which is
currently possible only with expensive lasers. Similarly, the
picosecond electrical pulses can be used as probe signals for
high-precision time-domain re°ectometry (TDR) [16].
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