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A wealth of effort in photonics has been dedicated to
the study and engineering of surface plasmonic waves
in the skin of three-dimensional bulk metals, owing
largely to their trait of subwavelength confinement.
Plasmonic waves in two-dimensional conductors,
such as semiconductor heterojunction and graphene,
contrast the surface plasmonic waves on bulk metals,
as the former emerge at gigahertz to terahertz
and infrared frequencies well below the photonics
regime and can exhibit far stronger subwavelength
confinement. This review elucidates the machinery
behind the unique behaviours of the two-dimensional
plasmonic waves and discusses how they can be
engineered to create ultra-subwavelength plasmonic
circuits and metamaterials for infrared and gigahertz
to terahertz integrated electronics.

1. Introduction
Surface plasmons propagating in the skin of a bulk—
three-dimensional—metal with a finite penetration depth
have generated a great deal of research in photonics,
because they can travel up to approximately 10 times
slower than the free-space light (speed c), and thus can
exhibit subwavelength confinement with proportionally
reduced wavelength [1–4]. In contrast to these surface
plasmons on bulk metals that emerge in the optical
frequencies, the plasmons in GaAs/AlGaAs two-
dimensional electron gas (2DEG) and graphene, where
electrons are perfectly confined into two dimensions,
appear at infrared and terahertz to gigahertz frequencies,
near or in the electronics regime. Furthermore, the
two-dimensional plasmons can achieve much greater
subwavelength confinement [5–7] with their velocity
being able to reach well below c/100 [6,8].
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By shaping the two-dimensional conductor geometry with the standard fabrication technology
and manipulating two-dimensional plasmonic waves via reflection, interference and coupling
according to the geometry, a variety of ultra-subwavelength two-dimensional plasmonic circuits
and metamaterials, such as bandgap crystals, interferometers, resonant cavities and negative
refractive index structures, can be created [6,8,9] for gigahertz to terahertz and infrared integrated
electronics with applications in imaging, large molecule spectroscopy and submillimetre
wave astronomy. The ultra-subwavelength confinement of these two-dimensional plasmonic
structures suggests exciting possibilities for sub-diffraction-limit imaging, near-field operation
and drastic miniaturization.

This review first elucidates the unique behavioural characteristics of plasmonic waves in
two-dimensional conducting media and their physical origin (§2). Then we delineate how two-
dimensional plasmonic waves can be engineered to build functional circuits and metamaterials
using some recent device advances as examples (§3).

2. Physical characteristics of two-dimensional plasmonic waves
Perturbation of the equilibrium electron density distribution in a solid-state conductor—whether
three- or two-dimensional—results in Coulomb restoring force, which drives local electrons
back and forth collectively to propel a plasmonic wave. The defining energetic component of
a plasmonic wave is the kinetic energy of the collectively oscillating electrons, which largely
accounts for the plasmons’ behavioural difference from light waves, in particular the reduced
plasmonic velocity and subwavelength confinement. The kinetic energy is far more strongly
pronounced in two-dimensional plasmonic waves than in three-dimensional bulk metal surface
plasmonic waves [6,9]. Consequently, the behaviour of two-dimensional plasmons diverges even
more significantly from light waves than three-dimensional surface plasmons; for example, and
notably, two-dimensional plasmons can achieve a significantly lower velocity thus a much greater
subwavelength confinement than three-dimensional surface plasmons. This section explicates
the origin of the unique behaviours of two-dimensional plasmonic waves in comparison to
three-dimensional bulk metal surface plasmonic waves.

(a) Transmission line model for two-dimensional plasmonic medium
As will be discussed shortly, the kinetic energy of the collectively oscillating electrons in a
two-dimensional plasmonic wave can be modelled using kinetic inductance of non-magnetic
origin [6,9]. On the other hand, the electric potential energy associated with the Coulomb restoring
force that drives local electrons into plasmonic oscillation can be modelled using electrical
capacitance. Besides the Coulomb restoring force, electron degeneracy pressure serves as another
restoring mechanism upon the disturbance of the equilibrium electron density distribution,
and this effect can be modelled using quantum capacitance [5,10–12]. This quantum pressure,
however, becomes conspicuous only when the Coulomb restoring force is substantially weakened
by, for example, placing a gate very proximate to the two-dimensional plasmonic medium and
reducing the Coulomb interaction range; throughout this paper, we ignore the quantum effect.
Then the two-dimensional plasmonic medium can be modelled as a transmission line consisting
of distributed kinetic inductance Lk per unit length and distributed electrical capacitance C
per unit length (figure 1) [6,9,13]. This plasmonic transmission line differs from the standard
electromagnetic transmission line in that the latter employs magnetic inductance instead of kinetic
inductance. The plasmonic velocity is then vp = 1/(LkC)1/2, which corresponds to the plasmonic
dispersion relation.

We first evaluate Lk in the two-dimensional conductor case where electrons have finite effective
mass, m∗, such as in GaAs/AlGaAs 2DEG (width W and length l) [9]. Let a time-dependent
electric potential V(t) be applied along the length to induce an electric field V(t)/l. Here, the
length l is chosen so short that the electric field does not exhibit a spatial variation; this is not
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Lk dx Lk dx Lk dx Lk dx Lk dx 

C dx C dx C dx C dx C dx

Figure 1. Transmission line model of a two-dimensional plasmonic medium. If the medium is gated, the gate serves as the
ground. For an ungated medium, the ground is the potential of the free space far enough away. dx: infinitesimal segment
length of the two-dimensional plasmonic medium.

a limiting assumption, as the goal is to derive the kinetic inductance per unit length. Inertial
accelerations occur, for which Newton’s equation of motion for an electron is −e(V/l) = m∗(dv/dt)
(v: electron velocity). This translates to −e(V/l) = iωm∗v in the frequency domain. From this and
by noting that the current because of the electrons’ motion is I = −n2DevW (n2D: conduction
electron density per unit area), the two-dimensional conductor’s impedance is obtained: V/I =
iω × (m∗/n2De2)(l/W). This is inductive impedance of non-magnetic origin, with the kinetic
inductance per unit length given by

Lk = m∗

n2De2 × 1
W

. (2.1)

By using k2
F = 2πn2D and EF = h̄2k2

F/(2m∗) (kF: Fermi wavenumber, EF: Fermi energy), we can
rewrite equation (2.1) as

Lk = π h̄2

e2 × 1
EF

× 1
W

. (2.2)

The kinetic energy of the accelerating electrons is intimately linked to the kinetic inductance.
With the velocity v of an electron at a given time, the total kinetic energy Ktotal of the electrons in
the two-dimensional conductor strip is expressed Ktotal = m∗v2/2 × n2DWl. As the total current is
I = −n2DevW, we can write

Ktotal = 1
2

× (Lkl) × I2, (2.3)

where Lkl is the total kinetic inductance of the two-dimensional conductor strip. Equation
(2.3) is analogous to the energy of a magnetic inductor with current I given by 1/2 ×
(magnetic inductance) × I2.

Alternatively, we can instead calculate Lk by first evaluating the total kinetic energy Ktotal
and current I in the k-space (k: electron wavenumber) and then relating them through the
energy–current relationship, equation (2.3) [9]. With the electric field applied along the length
of the two-dimensional conductor strip to which direction we assign a negative x-axis, the
two-dimensional Fermi disc with diameter kF whose centre originally lies at the k-space origin
(figure 2a) shifts towards the positive kx-axis, increasing the total kinetic energy and producing a
current I. Figure 2b shows the Fermi disc shift by �k � kF, after time �t. The total kinetic energy
increase is

Ktotal = Wl
∫∫

B
2

dkx

2π

dky

2π
E(k) − Wl

∫∫
A

2
dkx

2π

dky

2π
E(k), (2.4)

where the factor 2 in each integrand accounts for spin degeneracy and E(k) = h̄2k2/(2m∗) is the
energy of a single electron whose wavenumber is k. Keeping to the lowest order of �k, it is a
straightforward exercise to show that equation (2.4) leads to

Ktotal = WlEF

2π
× (�k)2. (2.5)

On the other hand, the current magnitude I is given by

I = W
∫∫

B
2

dkx

2π

dky

2π
evx(k), (2.6)
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Figure 2. Shift of the Fermi disc in the k-space in response to an electric field. (a) Fermi disc and (b) Fermi disc (after
acceleration).

where vx(k) is the x-component of the velocity of an electron whose wavevector is k, that is,
vx(k) = (h̄k/m∗) cos θ , where the integration variable θ is in reference to figure 2. Keeping to the
lowest order of �k, one can show that equation (2.6) reduces to

I = WeEF

π h̄
× �k. (2.7)

Equations (2.5) and (2.7) satisfy the energy–current relationship of equation (2.3) with Lk given by

Lk = π h̄2

e2 × 1
EF

× 1
W

, (2.8)

which is identical to the Lk-expression of equation (2.2).
The second approach to calculate Lk is more general than the first approach, because the second

approach can be applied to any arbitrary single electron E–k dispersion. In particular, in the
linear E–k dispersion case of graphene—another example of two-dimensional conductor—where
individual electrons behave as massless particles [14,15], the first approach cannot be used but the
calculation in the second approach can be repeated now with E(k) = h̄vFk, vx(k) = vF cos θ , and
with the appropriate degeneracy factor including both spin and valley degeneracies (vF: Fermi
velocity) [16]. The application of the second approach to the calculation of the graphene kinetic
inductance turns out to be identical to equation (2.8).

The per-unit-length capacitance, C, in the two-dimensional plasmonic transmission line
(figure 1), which models the Coulomb restoring force in the plasmonic wave, depends on
surroundings of the plasmonic medium. For example, if a two-dimensional conductor strip with
width W has no other conductors nearby, C for a given plasmonic wavenumber kp is given
by [17,18]

C = 2εkpW, (2.9)

where ε is the electric permittivity of the surroundings. This is obtained by calculating the electric
energy of the sinusoidal charge density distribution at a plasmonic wavenumber, kp.

As the plasmonic velocity is vp = ω/kp = 1/(LkC)1/2, we can now obtain the detailed expression
for the two-dimensional plasmonic dispersion. In the case of the stand-alone two-dimensional
conductor where C is given by equation (2.9), by using Lk of equation (2.8), whether the two-
dimensional conductor is semiconductor 2DEG or graphene, we obtain

ω = kp√
LkC

=
√

e2EF

2επ h̄2 kp. (2.10)

Calculation in the random phase approximation framework yields a more general form of the
two-dimensional plasmonic dispersion relation [5,19], but in the limit where quantum effects such
as electron degeneracy pressure and interband transitions can be ignored, the general dispersion
reduces to equation (2.10) for both semiconductor 2DEG and graphene [5,20].

 on September 5, 2014rsta.royalsocietypublishing.orgDownloaded from 





6

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20130104

.........................................................

d

(a)

ungated two-dimensional
plasmon

surface plasmon

light

(surface plasmon
resonance frequency)

(b)

wavenumber (kp for the plasmons)

fr
eq

ue
nc

y 
(w

)

gated two-dimensional 
plasmon

ungated two-dimensional plasmon

surface plasmon

Figure 3. (a) Illustration of the charge, electric field (grey arrows) andmagnetic field (blue circled dots and crosses) associated
with surface plasmonic wave on three-dimensional bulk metal and with two-dimensional plasmonic wave in an ungated
two-dimensional conductor. (b) Essence-capturing hypothetical dispersion curves for light wave, three-dimensional surface
plasmonic wave, ungated two-dimensional plasmonic wave and gated two-dimensional plasmonic wave. (Online version in
colour.)

decreases the number of conduction electrons participating in the surface plasmonic wave. At
frequencies below the optics regime, δ is large enough to render Lk,skin unappreciable when
compared with the magnetic inductance of the surface plasmonic medium. Hence, it is difficult
to observe surface plasmons below the optics regime with three-dimensional metals, and three-
dimensional surface plasmonic dispersion curve deviates away from the light dispersion line
only towards the optics regime (figure 3). By contrast, Lk of the two-dimensional plasmonic
medium has no frequency dependency, as there is no such frequency-dependent penetration
depth where electrons are confined perfectly into two dimensions. Moreover, Lk is orders of
magnitude larger than the magnetic inductance of the two-dimensional conductor. Therefore, the
two-dimensional plasmonic wave emerges far below the optics regime, with its dispersion curve
deviating significantly away from the light line at these low frequencies (figure 3).

Even when Lk,skin becomes appreciable in the optics regime with small enough δ and surface
plasmonic dynamics is more pronounced, kFδ is still much larger than 1, leaving Lk,skin � Lk (in
principle Lk,skin can grow indefinitely as frequency grows towards the surface plasmon resonance
frequency with δ approaching 0, but in practice loss obscures such excitations). The Lk,skin � Lk
inequality is further enhanced by the fact that EF appearing in both Lk,skin and Lk is typically much
larger with the three-dimensional bulk metal such as gold than with semiconductor 2DEG and
graphene. Overall, Lk,skin even in the optics regime is far smaller than Lk by two to three orders of
magnitude. As vp ∝ [kinetic inductance]−1/2, two-dimensional plasmonic velocity is far smaller
than three-dimensional surface plasmonic velocity typically limited to approximately c/10 [1]
(figure 3), achieving far greater ultra-subwavelength confinement. One can further slow the two-
dimensional plasmonic wave by placing a gate proximate to the two-dimensional conductor and
thus by shortening the Coulomb interaction range within the two-dimensional conductor (i.e. by
increasing C; note that vp = 1/(LkC)1/2) (equation (2.10) versus equation (2.11); figure 3); in fact,
with top-gated GaAs 2DEG, we were able to obtain two-dimensional plasmonic velocities as low
as approximately c/700 [6].

(c) Effect of electron scattering
Electron scatterings with phonons and lattice impurities in the two-dimensional plasmonic
medium are manifested as per-unit-length ohmic resistance R, which can be added to the
transmission line model of figure 1 in series with Lk. The quality factor of the two-dimensional
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plasmonic medium is then given by

Q = wLk

R
= wτ , (2.14)

where the electron scattering time τ factors in through R (note that we here are not considering
loss mechanism owing to interband transitions, for in practice many plasmonic applications can
be considered at frequencies where such transitions do not occur). The plasmonic dynamics can be
observed as far as Q is not too far below 1, i.e. if τ is long enough to accommodate an appreciable
kinetic energy increase (if Q is much larger than 1, many cycles of collective electron oscillation
are sustained between scattering events, making the plasmonic wave very easily observable).
To observe two-dimensional plasmonic waves at gigahertz frequencies, τ has to be increased,
which can be done by cryogenic operation, as applicable for GaAs/AlGaAs 2DEG where τ is
limited by phonon scattering down to substantially lowered temperature, but not as well with
graphene where impurity scattering is significant even at room temperature. At terahertz and
infrared frequencies, room temperature plasmonic operation is possible with both semiconductor
2DEG and graphene, as experimentally demonstrated [7,24].

3. Applications: ultra-subwavelength two-dimensional plasmonic circuits and
metamaterials

A two-dimensional plasmonic medium can be readily shaped into a designer planar geometry
by using the standard fabrication technology. Two-dimensional plasmonic waves then can
be manipulated by reflections, interferences and superposition according to the geometry. In
this way, one can create a variety of gigahertz to terahertz and infrared two-dimensional
plasmonic circuits and metamaterials [6,8,9]. Owing to their ultra-subwavelength confinement,
these two-dimensional plasmonic functional structures are amenable to near-field operation,
sub-diffraction-limit imaging, and drastic miniaturization.

An example of two-dimensional plasmonic circuits is plasmonic bandgap crystals, which
can be created by introducing structural periodicity into a two-dimensional conductor. These
plasmonic bandgap crystals are analogous to photonic bandgap crystals [25,26], but the former
operate far below the optical frequencies and exhibit much greater subwavelength confinement.
A proof-of-concept two-dimensional plasmonic crystal, which Andress et al. [6] built from
GaAs/AlGaAs 2DEG and operates in the gigahertz frequencies at cryogenic temperature (4.2 K),
is shown in figure 4. The 2DEG was periodically shaped by spatially modulating its width
(figure 4a) and was placed between electromagnetic metallic coplanar waveguides (CPWs),
consisting of signal (S) and ground (G) lines, where the S lines couple to the 2DEG via ohmic
contacts (figure 4a,b). The 2DEG is placed under a metallic gate, which is merged with the CPWs’
G lines; in this way, the top gate not only enhances the subwavelength confinement of two-
dimensional plasmonic waves, but serves as the proper plasmonic ground. Owing to the crystal
periodicity, the magnitude of the transmission parameter s21 obtained from microwave scattering
measurements shows a bandgap (24–34 GHz) around the first Brillouin-zone boundary (figure 4c),
where the crystal periodicity equals half the plasmonic wavelength, indicating vp ∼ c/300. The
phase of the measured s21 is a product of plasmonic wavenumber kp and the crystal length, thus,
s21’s phase over the frequency (figure 4d) yields the dispersion, which also shows the bandgap
behaviour. Its passband slope, which is linear owing to the gating (equation (2.11)), consistently
indicates vp ∼ c/300.

The shaping principle can be applied with a wealth of versatility. For instance, one can subtly
vary the crystal shape to introduce an appreciable behavioural difference. Figure 5a shows an
example variation [6], where the transitions between narrow and wide 2DEG sections are abrupt.
Plasmonic dynamics here is not a merely disturbed horizontal routing as in figure 4. Vertical
routing of plasmons to and from the ends of the thick sections (stubs) must be considered; in
fact, these stubs serve as plasmonic cavities that resonate by forming a λp/4 standing wave
(or its harmonics at higher frequencies), a superposition of plasmonic waves travelling to and
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Figure 4. (a) Two-dimensional plasmonic crystal with GaAs/AlGaAs 2DEG. (b) Cross-sectional schematic. (c,d) Measured
s21 magnitude and phase. Reprinted with permission from [6]. Copyright 2012 American Chemical Society. (Online version in
colour.)

20 μm 

6 μm 

16 μm 

010

10

20

30

40

50

60

20 30 40 10 20 30 40 5050 60
frequency (GHz)

fr
eq

ue
nc

y 
(G

H
z)

s21 phase (rad)

(a)

(b)
0.40 V
0.50 V
0.60 V

(c)

0.08

0.06

0.04

0.02

0

s 21
 m

ag
ni

tu
de

Figure 5. (a) Another linear two-dimensional plasmonic crystal with GaAs/AlGaAs 2DEG. (b,c) Measured s21 magnitude and
phase. Reprinted with permission from [6]. Copyright 2012 American Chemical Society. (Online version in colour.)

reflected from the stub ends. Thus, the repetition of the stubs results in an extra bandgap (approx.
52 GHz) arising from the λp/4 standing wave resonance, in addition to the Brillouin-zone-
boundary bandgap (figure 5b,c). By further exploiting the versatility of two-dimensional medium
shaping, Andress et al. also created plasmonic crystals with two-directional periodicity by
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Figure 6. (a) Rectangular and hexagonal two-dimensional plasmonic crystals (GaAs/AlGaAs 2DEG). (b) Measured
s21 magnitude (b(i)(iii)) and s21 phase (b(ii)(iv)) of rectangular (b(i)(ii)) and hexagonal (b(iii)(iv)) crystals. Reprinted with
permission from [6]. Copyright 2012 American Chemical Society. (Online version in colour.)

etching periodic lattices of holes into 2DEG (figure 6a). For two-dimensional plasmons travelling
horizontally, a bandgap occurs around the first Brillouin-zone boundary, at which the separation
between two adjacent vertical crystal planes equals λp/2. Indeed, two rectangular lattices and
a hexagonal lattice made out of 2DEG in figure 6a produce expected bandgaps measurements
(figure 6b).

Another exciting avenue to explore is to create plasmonic interferometers. We recently
demonstrated a two-path interferometer of Mach–Zehnder type where two two-dimensional
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plasmonic waves undergoing different phase delays are made to interfere [8]. These on-chip two-
dimensional plasmonic interferometers exhibit a higher sensitivity to the effective path length
difference when compared with interferometers employing electromagnetic waves, owing to
two-dimensional plasmons’ ultra-subwavelength confinement. The two-dimensional plasmonic
interferometers may thus be useful for highly precise and sensitive signal detection, modulation
and demodulation, and biomolecular and chemical sensing, in particular, at terahertz and
infrared frequencies.

Negative index metamaterials have been a topic of interest owing to their unusual abilities
that can lead to technologically gainful applications, and a broad array of negative index
metamaterials has been synthesized by engineering electric, magnetic or optical properties of
materials [27–31]. Ultra-subwavelength two-dimensional plasmons, in particular their associated
large two-dimensional kinetic inductance, can be engineered by shaping the two-dimensional
conductor geometry to create a new type of metamaterials with extraordinarily strong
negative refraction. Using kinetic inductance for negative refraction was envisioned with three-
dimensional metallic nanoparticles [32] and experimentally glimpsed with three-dimensional
metal surface plasmons [33], but three-dimensional kinetic inductance is far smaller than two-
dimensional kinetic inductance, and the two works yielded negative indices less than −5.
By contrast, we recently obtained a negative index as large as −700 by exploiting the large
two-dimensional kinetic inductance [9]. The large negative index, which corresponds to ultra-
subwavelength confinement of a negatively refracting wave, can bring the science of negative
refraction into drastically miniaturized scale and enable sub-diffraction-limit imaging.

Figure 7 shows a proof-of-concept negative index metamaterial operating at gigahertz
frequencies and cryogenic temperature (up to 20 K) from the aforementioned work of ours [9].
It is an array of ungated GaAs/AlGaAs 2DEG strips (figure 7a,b). Metallic CPWs consisting of
signal lines (S) flanked by ground lines (G) are used to guide signals to and from the device. Each
2DEG strip is tied to the G lines at its both ends via ohmic contacts. The left S line extends up
to over a few strips on the left-hand side. The excitation electromagnetic wave’s electric fields
between the signal and ground lines of the left CPW excites two-dimensional plasmonic waves
in the leftmost few strips along the direction of the strips. The resulting modulation of charge
distribution in these strips capacitively couple to the neighbouring strip to the right, exciting
two-dimensional plasmonic waves along the direction of the strip. This energy transfer process is
repeated, delivering an effective wave from left to right, perpendicularly to 2DEG strips. Note that
two types of waves are involved (figure 7c); the two-dimensional plasmonic wave travelling along
each strip, and the effective wave propagating orthogonally to the strips. It is this effective wave
that is negatively refracting.

As no current passes across any strip centre owing to symmetry, only the lower half below
the horizontal symmetry line, or half circuit, can be used in understanding the metamaterial. If
we denote the voltage at the top end of the mth half strip as Vm(t), the effective wave can be
represented by {V1(t), V2(t), V3(t), . . .} (figure 7c). Each half strip may be modelled as a plasmonic
transmission line supporting a two-dimensional plasmonic wave (figure 7c). But as the plasmonic
transmission line is short-circuit terminated to ground at its end and the plasmonic wavelength
is much longer than the strip length in this design, the plasmonic transmission acts like a lumped
two-dimensional kinetic inductor, Lkl, where l is the effective length of the half strip. The entire
half-circuit is then an array of capacitively coupled lumped kinetic inductors (figure 7d). This
may be likened to the left-handed electromagnetic transmission line, an array of capacitively
coupled magnetic inductors, which is known to be negatively refracting [34,35]. However, with
the significantly large two-dimensional kinetic inductance, the 2DEG strip array yields a negative
index as large as −700 [9], while the left-handed electromagnetic transmission line, which relies on
three to four orders of magnitude smaller magnetic inductance, yields negative indices typically
below −5.

We reviewed the unique characteristics of two-dimensional plasmonic waves (in particular,
their ultra-subwavelength confinement) and their underlying physics and described how two-
dimensional plasmonic waves can be engineered by geometric shaping of two-dimensional
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conductor to create two-dimensional plasmonic circuits and metamaterials. The proof-of-concept
devices presented were implemented with GaAs 2DEG, and operated at gigahertz frequencies,
thus at cryogenic temperature. However, room temperature excitation of two-dimensional
plasmonic waves is possible at terahertz and infrared frequencies with both GaAs 2DEG and
graphene [7,24], thus the demonstrated device designs can be scaled to these higher frequencies
for room temperature operation.
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